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Clinical features of COVID-19 mortality: development and 
validation of a clinical prediction model
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Summary
Background The COVID-19 pandemic has affected millions of individuals and caused hundreds of thousands of 
deaths worldwide. Predicting mortality among patients with COVID-19 who present with a spectrum of complications 
is very difficult, hindering the prognostication and management of the disease. We aimed to develop an accurate 
prediction model of COVID-19 mortality using unbiased computational methods, and identify the clinical features 
most predictive of this outcome.

Methods In this prediction model development and validation study, we applied machine learning techniques to clinical 
data from a large cohort of patients with COVID-19 treated at the Mount Sinai Health System in New York City, NY, USA, 
to predict mortality. We analysed patient-level data captured in the Mount Sinai Data Warehouse database for individuals 
with a confirmed diagnosis of COVID-19 who had a health system encounter between March 9 and April 6, 2020. For 
initial analyses, we used patient data from March 9 to April 5, and randomly assigned (80:20) the patients to the 
development dataset or test dataset 1 (retrospective). Patient data for those with encounters on April 6, 2020, were used in 
test dataset 2 (prospective). We designed prediction models based on clinical features and patient characteristics during 
health system encounters to predict mortality using the development dataset. We assessed the resultant models in terms 
of the area under the receiver operating characteristic curve (AUC) score in the test datasets. 

Findings Using the development dataset (n=3841) and a systematic machine learning framework, we developed a 
COVID-19 mortality prediction model that showed high accuracy (AUC=0·91) when applied to test datasets of 
retrospective (n=961) and prospective (n=249) patients. This model was based on three clinical features: patient’s age, 
minimum oxygen saturation over the course of their medical encounter, and type of patient encounter (inpatient vs 
outpatient and telehealth visits).

Interpretation An accurate and parsimonious COVID-19 mortality prediction model based on three features might 
have utility in clinical settings to guide the management and prognostication of patients affected by this disease. 
External validation of this prediction model in other populations is needed.

Funding National Institutes of Health.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
The COVID-19 pandemic has affected more than 
18 million individuals, and caused almost 700 000 deaths 
worldwide as of Aug 3, 2020.1 Although the causative 
virus severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) primarily targets the respiratory system,2,3 
complications in other organ systems (eg, cardio
vascular, neurological, and renal) can also contribute to 
death from the disease. Clinical experience thus far has 
shown substantial heterogeneity in the trajectory of 
SARS-CoV-2 infection, spanning from patients who are 
asymptomatic to those with mild, moderate, and severe 
disease forms with low survival rates.2,3 Notably, accurate 
prediction of clinical outcomes for patients across this 
spectrum of clinical presentations can be difficult. This 
problem presents an enormous challenge to the 
prognostication and management of patients with 
COVID-19, especially within disease epicentres that 
need to triage a high volume of patients. Therefore, 

accurate prediction of COVID-19 mortality and the 
identification of contributing factors would allow for 
targeted strategies in patients with the highest risk of 
death.

Towards this aim, we analysed clinical data from 
5051 patients who had laboratory confirmed SARS-CoV-2 
infection and were treated in multiple hospitals and 
ambulatory locations of the Mount Sinai Health System 
in New York City, NY, USA, spanning different boroughs 
of the city. We aimed to use multiple machine learning-
based classification algorithms4 to develop models that 
can accurately predict mortality from COVID-19. We 
aimed to identify clinical features that contributed the 
most to this prediction. An improved understanding of 
predictive factors for COVID-19 is crucial for the 
development of support systems for clinical decision 
making that can better identify those with higher risk of 
mortality, and inform interventions to reduce the risk 
of death.
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Methods
Study design and population
In this prediction model development and validation 
study, we used anonymised electronic medical record 
(EMR) data from patients with a confirmed diagnosis of 
COVID-19 who had been treated in the Mount Sinai 
Health System, between March 9 and April 6, 2020. The 
Mount Sinai Health System is a network of eight 
hospitals and over 400 ambulatory practices spanning 
the New York metropolitan area (appendix p 4). A 
diagnosis of COVID-19 was determined by positive 
PCR-based clinical laboratory testing for SARS-CoV-2.

Data were internally stored and managed by the 
Mount Sinai Data Warehouse. After anonymisation and 
removal of protected health information, the data were 
released in a text-delimited format for research 
purposes. 

Patient-level data were collected for the initial analyses 
in our study. All patients with a confirmed diagnosis of 
COVID-19 and an inpatient or outpatient (including 
telehealth) visit to the Mount Sinai Health System 
during the study period were included. All collected 
data and events occurring during the time that medical 
attention was provided to the patient during the visit 
were defined as an encounter. An encounter included 
all collected data and events occurring over the time that 
medical attention was provided to the patient during the 
visit or stay in hospital. The initial clinical data element 
collected during the patient encounter was considered 
as the data at presentation. These data included 
demographic variables, such as age, sex, and ethnicity, 
and comorbidities, such as diabetes and asthma, defined 
by the presence of corresponding International 

Classification of Diseases tenth revision codes that were 
active on the patient’s EMR problem list at the beginning 
of the encounter. These data were self-reported by 
patients or recorded in the medical chart by health-care 
providers during current and previous medical 
encounters.

Patients also reported their smoking status as current, 
never, past, or passive (passive was included as a category 
given the potential health effects of second-hand smoke5). 
Variables pertaining to the highest or lowest value 
recorded of its kind (ie, highest body temperature and 
lowest oxygen saturation level) during the encounter 
were designated as maximum or minimum. Notably, 
datasets downloaded on a set date (eg, April 6) only 
included data collected up until the day before that date 
(ie, April 5), and therefore did not include any follow-up 
data of patients in those cohorts beyond those respective 
dates. The final set of features and variables, which were 
harmonised across the various Mount Sinai Health 
System medical centres as well as possible, are listed and 
defined in the appendix (p 5). The mortality outcome 
predicted in this work was defined as positive if a patient 
with COVID-19 died during their encounter with the 
health system by the current date (ie, April 5, 2020). If a 
patient had not reached the outcome (death) by the time 
the data were obtained, their outcome was marked as 
negative (alive). 

Under an agreement with the Institutional Review 
Board (IRB), which is a precursor and separate from our 
study, the Mount Sinai Data Warehouse released 
anonymised clinical data of all patients with COVID-19 
who had or were having treatment in the Mount Sinai 
Health System to the Mount Sinai Health System (not to 

Research in context

Evidence before this study
We searched PubMed and its associated LitCovid repository 
for publications in English from database inception until 
May 10, 2020, using the terms “coronavirus”, “COVID-19”, 
“death”, “mortality”, and “prediction”. The studies we identified 
generally focused on a small set of clinical features, risk factors, 
or small cohorts to study or predict mortality due to COVID-19, 
which might not sufficiently capture the novelty and 
complexity of the disease. These studies also used relatively 
simple analytical methods, which might not adequately model 
the inherent difficulties of the data (eg, collinear or irrelevant 
features, non-linear relationships between features and 
mortality, noise, and missing data). These factors likely restrict 
the ability of existing work to accurately predict mortality.

Added value of this study
We analysed clinical data from a large cohort of patients with 
COVID-19 treated in a major health system serving a global 
epicentre of COVID-19 (New York City, NY, USA) to identify 
prediction models of mortality due to COVID-19. The novel 

model we developed was based on three clinical features (age, 
minimum oxygen saturation during encounter, and health-care 
setting of patient encounter) and accurately predicted 
mortality risk in two validation cohorts (area under the receiver 
operating characteristic curve of >0·90).

Implications of all the available evidence
We present here a highly robust COVID-19 mortality prediction 
analysis, derived from working with both the largest number of 
patients and clinical features to date. Our large cohort and the 
rigorous analytical methods we used lend our study two major 
advantages over previous studies: our prediction model 
performs better than those proposed previously, and since we 
started with a large set of clinical features, the ones that we 
identified to be most strongly associated with mortality are 
more objective and accurate. After validation in other health 
system populations, our model could be implemented in 
clinical settings to enable improved prognostication and 
management of COVID-19.

See Online for appendix
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the public). Since anonymised data were used, patient 
consent was not sought.

Datasets 
We downloaded patient-level data on April 6 for the 
period March 9–April 5, 2020, and this dataset was 
randomly split, without replacement based, on a uniform 
distribution, into two groups of independent patients 
comprising 80% of the sample for development of the 
mortality prediction model (ie, development dataset), 
and 20% for a retrospective test dataset (referred to as 
test dataset 1). The date of data acquisition was chosen to 
include as large a cohort as possible in the prediction 
model development dataset. These data were pre-
processed to address quality issues, such as repeated 
entries for any patients, excessive missing values in any 
features, and the absence of normalisation of continuous 
features (figure 1; details are in the appendix [p 2]).

Furthermore, a prospective validation set of patients, 
independent of the other datasets, referred to as test 
dataset 2, included new patients with COVID-19 included 
in the Mount Sinai Health System database on April 7, 2020. 
Based on the definitions above, this prospective test dataset 
comprised patients with COVID-19 who were treated on 
April 6, 2020, specifically, and whose data, including their 
outcome, were recorded on the same day. The demographic 
and clinical data (ie, feature data) recorded for these 
patients were consistent with those of the patients in the 
development dataset and test dataset 1. Test dataset 2 was 
pre-processed using the same process as the development 
dataset and test dataset 1 (appendix p 2).

We did univariate significance analyses of the 
differences in continuous features between alive and 
deceased patients using Student’s t test and of categorical 
features using the χ² test in all the resultant datasets. We 
calculated effect sizes as odds ratios (ORs) for values of 
categorical features using their respective counts in the 
data, and for continuous features using a logistic 
regression model. We used a p value threshold of 0·05 to 
determine significance in these and other analyses in 
this study.

Identification and validation of the prediction model
We implemented a systematic machine learning-based 
framework to construct the mortality prediction model 
from the development dataset using missing value 
imputation,6 feature selection,7 classification,4 and statis
tical8 techniques. Specifically, we used the recursive fea
ture elimination method7 for feature selection, and 
logistic regression, support vector machine, random 
forest, and eXtreme Gradient Boosting (XGBoost) algo
rithms4 for prediction. We adopted these multivariate 
algorithms because they attempt to find the best com
bination of individual features that can constitute as 
accurate a prediction model as possible.

We aimed to build a model that could classify a patient 
with COVID-19 as likely to survive or die from the dis
ease—ie, “alive” or “deceased”. The resultant prediction 
model was then validated in test datasets 1 and 2 in terms of 
the area under the receiver operating characteristic curve 
(AUC) score.9 On the basis of missing value imputation, 
feature selection, and prediction methods listed here and 

Figure 1: Workflow for data management and COVID-19 mortality prediction model development
Data were obtained from the Mount Sinai Data Warehouse. After pre-processing, data for patients with COVID-19 (n=4802) were randomly divided in an 80:20 ratio 
into a prediction model development dataset (n=3841) and an independent retrospective validation dataset (test dataset 1; n=961). For prediction model training 
and selection, the development dataset was further randomly split into a 75% training dataset (n=2880) and a 25% holdout dataset (n=961). Four classification 
algorithms were assessed. The final predictive model was validated on test dataset 1 and another independent prospective validation dataset (test dataset 2; n=249). 
LR=logistic regression. RF=random forest. SVM=support vector machine. XGBoost=eXtreme Gradient Boosting.
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this score, we followed a sampling-based training and 
validation process to evaluate several prediction models. 
Specifically, we randomly split the development dataset 
into training and holdout datasets in a 3:1 ratio using 
sampling without replacement from a uniform distribution 
(figure 1). Candidate prediction models were trained on the 
training split using the prediction algorithms mentioned, 
and assessed on the holdout split in terms of the AUC 
score. This process was repeated 100 times, and the 
performance results collected for all the prediction 
algorithms and compared. We selected the final prediction 
algorithm, features, and model on the basis of these 
performance results. Full details of all the methods are 
provided in the appendix (pp 2–3).

All the analyses and figure generation were done using 
the Python programming language (version 3.7.3) in this 
study.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data management, data inter
pretation, or writing of the report. ASY, Y-cL, RI, and GP 
had full access to all the data in the study and had 
responsibility for the decision to submit for publication.

Results
The overall workflow of the model development process 
is shown in figure 1. The demographic and clinical 
characteristics of patients with COVID-19 included in the 
development dataset (n=3841; of whom 313 were deceased 
and 3528 were alive), test dataset 1 (n=961; of whom 
78 were deceased and 883 were alive), and test dataset 2 
(n=249; of whom 25 were deceased and 224 were alive) 
are shown in the table. 2125 (55%) of 3841 patients in the 
development dataset were male, and 192 (61%) of 
313 deceased patients were male. Patients were mostly 
white (1008 [26%]), African American (973 [25%]) and 
Latino (932 [24%]), with 162 (4%) identifying as Asian. 
Hypertension and diabetes were the most common 
comorbidities in this dataset, and few patients had obesity 
or cancer, and even fewer had asthma, chronic obstructive 
pulmonary disease (COPD), or currently smoked.

Univariate analyses of patient characteristics in the 
development dataset (table) showed that those who died 
were significantly older, with a mean age of 73·4 years 
(SD 12·7) compared with 54·7 years (18·7) years in those 
who were alive (p<0·0001). Patients who were alive were 
more likely to have had their initial encounter at a hospital 
than at an outpatient or telehealth setting within our 
hospital system than were patients who died (OR 15·59, 
95% CI 6·92–35·11; p<0·0001). Those who died had lower 
oxygen saturation at initial presentation, and their 
minimum oxygen saturation over the duration of their 
encounter was also lower (p<0·0001 for both). Patients 
who died were more likely to be current smokers (p=0·048) 
and have COPD (p<0·0001), hypertension (p<0·0001), and 
diabetes (p<0·0001) than were those who were alive.
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The characteristics of test datasets 1 and 2 were largely 
similar to those of the development dataset, except for 
some differences in the relative proportions of ethnicity 

(table). Although minimum oxygen saturation during 
encounter was consistently lower among the deceased 
patients versus alive patients in both test datasets, oxygen 
saturation levels at presentation were significantly lower 
among the deceased patients in test dataset 1 only. The 
prevalence of asthma was significantly higher in the 
deceased group than in the alive group in test dataset 2 and 
no difference was seen for the other datasets. The pre
valence of diabetes was higher in deceased patients in 
both datasets.

Using our development dataset, we first attempted to 
find the optimal proportion of missing values in each 
variable across the patients (missing value level) that 
could be imputed and lead to more accurate prediction 
models. For this step, we took incremental steps of 5% 
in missing value levels in the range of 0% to 60%, and 
used mean imputation for continuous features and 
mode imputation for categorical features. At each level, 
the four candidate algorithms (logistic regression, 
random forest, support vector machine, and XGBoost) 
were trained and assessed on the corresponding holdout 
dataset in terms of the AUC score as the measure. This 
process was repeated 100 times and the average AUCs 
for each candidate prediction model were calculated to 
find the optimum missing value level. We identified 
17 distinct clinical features with less than 20% missing 
values among the patients in the development dataset 
that improved prediction performance (figure 2). 
Compared with the other classification algorithms, 
XGBoost was significantly better at 20% and higher 
levels of missing values (figure 2). Therefore, we used 
the imputed version of the development dataset with 
17 features and XGBoost to develop the first COVID-19 
mortality prediction model in this study, referred to as 
the 17F model.

We also tested if a smaller subset of the 17 features could 
yield an even more accurate prediction model, since such a 
subset would be easier to study and implement in a clinical 
setting. Using a setup analogous to the imputation 
method, we used the recursive feature elimination algo
rithm and assessed the performance of the four classi
fication algorithms with different numbers of features 
selected from the full set of 17. We repeated the process 
100 times to get an average AUC score for each number of 
features included in the corresponding candidate predic
tion models. We found that for the XGBoost algorithm, the 
AUC became saturated at as few as three features (figure 2). 
This observation validated our hypothesis that fewer than 
17 features could yield an accurate prediction model. The 
three features identified from the development dataset 
were minimum oxygen saturation recorded during the 
encounter, patient age, and type of encounter. We trained 
this second COVID-19 mortality prediction model, referred 
to as the 3F model, by applying XGBoost to these three 
features in the imputed development dataset.

Validation of the 17F and 3F models on test dataset 1 
(retrospective data) and test dataset 2 (prospective data) 

Figure 2: Results from missing value imputation (A) and feature selection (B) during prediction model 
training and selection
(A) Datapoints show the average AUC score for each candidate algorithm and missing value level, with error bars 
shown by whiskers. (B) Datapoints show the average AUC score for each subset of number of features with error 
bars shown by whiskers. The details of the computational methods underlying these analyses are provided in the 
appendix (pp 2–3). AUC=area under the receiver operating characteristic curve. XGBoost=eXtreme Gradient 
Boosting.
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their AUC scores, with 95% CIs in parentheses. Calibration curves of the 3F and 17F models on test datasets 1 (C) 
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the ROC curve. ROC=receiver operating characteristic.
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both yielded good performance (AUC score of >0·9; 
figure 3). Calibration curves10 of the 17F model’s and 
3F model’s performances on the two test datasets also 
showed that the models did reasonably well at predicting 
patient mortality (figure 3). This interpretation is based on 
the observation that the slopes of all the curves were 
relatively close to one and the intercepts were close to zero, 
although the results were better on test dataset 1 than on 
test dataset 2. The prediction models’ strong performance 
in both test datasets suggests the possibility that COVID-19 
mortality predictors constructed from data on a given day 
can be applied retrospectively and prospectively.

Similar to the features that the 3F model was based on, 
we identified the three most predictive features for the 
other classification algorithms we tested (figure 4). For 
this analysis, we identified the three most predictive 
features selected in all the 100 training-holdout splits of 
the development dataset for the four prediction 
algorithms assessed in figure 2B, and ranked them in 
terms of their frequency of selection across the 100 runs. 
Although there was variability among these features due 
to the inherent differences among the algorithms, the 
age of the patient and their minimum oxygen saturation 
level during the clinical encounter were consistent 
features across the algorithms. The values of minimum 
oxygen saturation and age were significantly different 
between the deceased and alive groups in all datasets 
(table, figure 4), supporting their predictive power. The 
top three features for each algorithm were consistent 
when the feature selection and prediction model 
development process was repeated three times on the 
development dataset (appendix p 6).

Discussion
We applied machine learning algorithms to clinical and 
demographic data from patients with COVID-19 from 
a major New York metropolitan area health system to 
develop and test a mortality prediction model that showed 
high accuracy (AUC score of 0·91) when applied to test 
datasets of retrospective and prospective patient data. This 

3F mortality prediction model was based on three clinical 
features: age, minimum oxygen saturation, and type of 
patient encounter (inpatient vs outpatient and telehealth 
encounters). Given the heterogeneity in clinical presen
tation and disease course observed among patients with 

XGBoost
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Figure 4: Top predictive features selected for the four classification algorithms
(A) Top three predictive features identified using the recursive feature 

elimination method for the four classification algorithms across the 100 runs 
used to select the most discriminative features and train the corresponding 

candidate prediction models; the values in parentheses indicate the number 
of times the feature was selected as top ranked in the development dataset. 

Minimum oxygen saturation (B) and age (C) features, which were selected as top 
predictive features for all the four algorithms, are presented as violin plots 

showing the distributions of the values in the development dataset. In panels B 
and C, the black boxplots in the middle show the distribution of the values on the 

y axis, with the white dot indicating the median value; the width of the grey 
shape at a given value on the y axis indicates the probability of occurrence of that 

value in the population shown. The plots in panel B show that the median 
value (79%) of minimum oxygen saturation for the deceased group 

was significantly lower (Student’s t test p<0·0001) than the median value (92%) 
for the alive group. Similarly, the plots in panel C show that the median age 

(75 years) in the deceased group is higher (Student’s t test p<0·0001) than that in 
the alive group (56 years). COPD=chronic obstructive pulmonary disease.
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COVID-19,2,3 factors that contribute most to mortality are 
not always readily apparent, rendering care and manage
ment of these patients difficult in settings of finite health-
care resources. Our work shows that input of three highly 
accessible clinical parameters for a patient—age, mini
mum oxygen saturation, and type of patient encounter—
into an automatable XGBoost algorithm has the potential 
to accurately classify patients as likely to live or die. We 
recognise that external validation of our prediction model 
in other populations is the next step in model development. 
Should such validation show that our model performs 
well in multiple populations, we envision that incor
poration of our automatable mortality prediction model 
into the clinical care workflow of a patient with COVID-19 
could yield an additional vital sign that is assessed 
regularly during a patient’s encounter. Clinical teams 
could use results from the prediction model throughout 
patients’ encounter to flag individuals at high risk of death 
so that they can promptly focus treatment and attention 
on such individuals to prevent deaths.

A major strength of this study is that it was based on 
recent data from thousands of patients with COVID-19 in 
a global epicentre of the pandemic (New York City), 
resulting in findings that are highly relevant to the 
current pandemic. The results are based on rigorous 
machine learning analyses powered by a robust sample 
of patients with laboratory confirmed SARS-CoV-2 
infection and show the potential of these methods to 
identify factors predicting mortality in clinical settings. 
Application of machine learning enabled the identification 
of prediction models based on the XGBoost algorithm.11 
These prediction models worked with high accuracy 
(AUC scores of 0·91–0·94) in two independent validation 
datasets of patients with COVID-19. Furthermore, the 3F 
model, which was based on only the three features 
identified, did almost as well as the 17F model, which 
was based on all the features, that had a level of missing 
values that was useful for prediction. This finding 
indicates that accurate mortality predictions can be 
obtained from a more parsimonious model, facilitating 
more efficient implementation in clinical environments 
after extensive validation in other datasets and health 
systems.

Age and minimum oxygen saturation during 
encounter were the most predictive features not only for 
the XGBoost algorithm, but for all four mortality 
prediction models tested, emphasising these features’ 
epidemiological and clinical relevance. Since the 
beginning of the COVID-19 pandemic, older age has 
been recognised as a risk factor for worse outcomes.12,13 
In New York State, USA, patients aged 60 years and 
older represent nearly 85% of all deaths due to 
COVID-19 as of Sept 2, 2020,14 and similarly, higher 
rates of mortality among those in older age groups than 
in younger age groups have been noted in other 
COVID-19 hotspots across the USA.15 Additionally, the 
fundamental clinical presentation of patients with 

COVID-19 during the pandemic has been respiratory 
symptoms associated with hypoxia, often leading to 
subsequent respiratory failure and requiring ventilator 
support, extracorporeal membrane oxygenation, or 
both.16 Our finding that a patient’s minimum oxygen 
saturation value during their encounter was the 
strongest predictive feature of mortality is in line with 
global epidemiological observations that respiratory 
failure is the most common feature of critical illness 
and death in patients with COVID-19.17,18

In addition to age and oxygen saturation, health-care 
encounter type (inpatient vs outpatient and telehealth), was 
identified as a highly indicative feature in the 3F mortality 
prediction model. This finding reflects the fact that 
patients with COVID-19 with more severe symptoms are 
more likely to have their initial encounter in the hospital 
than in an outpatient setting as their first point of contact. 
Also, although not the most predictive feature, maximum 
body temperature during encounter was a top-ranked 
feature identified by the random forest-based mortality 
predictor. Although fever is a common symptom and sign 
of COVID-19, patients might not always present with an 
increased body temperature, and fever might develop later 
during the disease course.2,19 Consistent with this obser
vation, these mortality predictors identified maximum 
body temperature during encounter, rather than body 
temperature at presentation, as a top classifying feature.

Several other studies have been published on the 
investigation of factors affecting mortality due to 
COVID-19. Some investigators have done statistical 
association analyses of individual patient characteristics 
and risk factors with mortality, albeit on small cohorts 
(<200 patients).20–23 Another small cohort study used linear 
feature selection and prediction model development 
methods to identify severe cases of COVID-19, with an 
AUC of 0·853 in a validation cohort of 165 patients.24 
Some other studies have started leveraging clinical data 
from larger cohorts of several hundred patients to predict 
mortality and other COVID-19 outcomes.25 A relative 
strength of our study is that we used a large patient cohort 
and systematic combinations of machine learning 
methods to develop a more accurate and informative 
mortality prediction model. In particular, the comparatively 
larger set of predictor variables compared with previous 
studies and the recursive feature elimination selection 
method we used in our study provided an opportunity to 
automatically identify accurate and parsimonious sets of 
variables and prediction models. Due to the size of the 
cohort and prediction methods used, these datasets and 
models were likely to perform better than previously 
proposed methods for this problem.

Machine learning-based methods are designed to sift 
through large amounts of structured or unstructured data 
to discover actionable knowledge without bias from 
biomedical hypotheses.4,26 In this study, we used this power 
of machine learning, especially for feature selection7 and 
classification,4 to develop accurate and parsimonious 
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prediction models of mortality from COVID-19 from 
structured clinical and demographic data. In particular, we 
found that the XGBoost11 algorithm produced the most 
accurate prediction models. XGBoost is a sophisticated 
prediction algorithm that builds an ensemble of decision 
trees by iteratively focusing on harder to predict subsets of 
the training data. Due to its systematic optimisation-based 
design, this algorithm has shown superior performance in 
predictive modelling applications involving structured 
data,27,28 which is consistent with our observations.

Our study had several limitations. Although our 
datasets are probably the largest that have been used to 
predict COVID-19 mortality, the clinical features available 
to us were limited to those routinely collected during 
hospital encounters. Although we were able to develop 
accurate prediction models from these limited data using 
our machine learning framework, development of even 
better prediction models should be possible using a 
richer set of features. In the future, development of more 
accurate prediction models for COVID-19 mortality and 
other outcomes should be possible via integration of 
multimodal data collected from patients. These data 
include demographics, comorbidities, laboratory test 
measurements, vital signs, chest imaging, clinical notes, 
and omic data, and can be integrated into prediction 
models using techniques like heterogeneous ensembles29 
and deep learning.30 Our study data were also limited in 
several other aspects. First, although our development 
and validation datasets were larger than previous studies, 
some of them were small in size. Specifically, test 
dataset 2 included only 249 patients, with only 25 patients 
who died. Second, our datasets only represent a snapshot 
in time, and mortality outcomes might change in 
different timeframes. For instance, test datasets 1 and 2 
contained data from patients with COVID-19 who had 
encounters in our health system during the period March 
9–April 5, 2020, and on April 6, 2020. Changing these 
date ranges could have changed their respective mortality 
rates. Similar changes could also occur for the values of 
time-varying features like minimum oxygen saturation. 
Factors like these could have affected our prediction 
results. Finally, although our development dataset, test 
dataset 1, and test dataset 2 were generated as system
atically and without bias as possible, significant 
differences existed between them in terms of feature 
values and mortality rates.

 A key limitation of the clinical indices included in the 
datasets include the uniformity of EMR-derived data. For 
example, although minimum oxygen saturation during 
encounters was identified as a key predictor for mortality, 
limitations inherent in the interpretation of these data 
must be noted, such as the unavailability of the amount of 
supplemental oxygen being administered at the time of 
recording and acquisition-related limitations, such as 
readings below the threshold of accuracy of the monitoring 
device (eg, <70%). Nonetheless, we found a clearly lower 
distribution of minimum oxygen saturation levels in 

patients who died from COVID-19 compared with those 
who were alive, highlighting this clinical feature as central 
to predicting mortality. Furthermore, since EMR systems 
are not fully synchronised across health systems yet, 
another health system’s data might not be consistent with 
ours. Thus, appropriate modifications to another health 
system’s EMR data might be needed to apply our 
approach. We expect that the details in the Methods and 
appendix will assist in these modifications and 
applications.

Applying machine learning approaches to data from a 
large cohort of patients with COVID-19 resulted in the 
identification of accurate and parsimonious prediction 
models of mortality. After extensive validation in other 
datasets and health systems, these data-driven findings 
might help clinicians better recognise and prioritise the 
care of patients at greatest risk of death.
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